Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 72, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429691

RESUMO

BACKGROUND: Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS: To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS: We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.


Assuntos
Escherichia coli , Fosfatos de Poli-Isoprenil , Escherichia coli/genética , Polissacarídeos , Biotecnologia
2.
Biochemistry ; 60(27): 2221-2230, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34159784

RESUMO

Colanic acid is a glycopolymer loosely associated with the outer membrane of Escherichia coli that plays a role in pathogen survival. For nearly six decades since its discovery, the functional identities of the enzymes necessary to synthesize colanic acid have yet to be assessed in full. Herein, we developed a method for detecting the lipid-linked intermediates from each step of colanic acid biosynthesis in E. coli. The accumulation of each enzyme product was made possible by inactivating sequential genes involved in colanic acid biosynthesis and upregulating the colanic acid operon by inducing rcsA transcription. LC-MS analysis revealed that these accumulated materials were consistent with the well-documented composition analysis. Recapitulating the native bioassembly of colanic acid enabled us to identify the functional roles of the last two enzymes, WcaL and WcaK, associated with the formation of the lipid-linked oligosaccharide repeating unit of colanic acid. Importantly, biochemical evidence is provided for the formation of the final glycosylation hexasaccharide product formed by WcaL and the addition of a pyruvate moiety to form a pyruvylated hexasaccharide by WcaK. These findings provide insight into the development of methods for the identification of enzyme functions during cell envelope synthesis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Polissacarídeos/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Polissacarídeos/genética
3.
ACS Chem Biol ; 16(4): 691-700, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33740380

RESUMO

The enterobacterial common antigen (ECA), a three-sugar repeat unit polysaccharide produced by Enterobacteriaceae family members, impacts bacterial outer membrane permeability, and its biosynthesis affects the glycan landscape of the organism. ECA synthesis impacts the production of other polysaccharides by reducing the availability of shared substrates, the most notable of which is the 55-carbon polyisoprenoid bactoprenyl phosphate (BP), which serves as a carrier for the production of numerous bacterial glycans including ECA, peptidoglycan, O-antigen, and more. Here, using a combination of in vitro enzymatic synthesis and liquid chromatography-mass spectrometry (LC-MS) analysis of bacterial lysates, we provide biochemical evidence for the effect on endogenous polyisoprenoid pools from cell culture that arises from glycan pathway disruption. In this work, we have cloned and expressed each gene involved in ECA repeat unit biosynthesis and reconstituted the pathway in vitro, providing LC-MS characterized standards for the investigation of cellular glycan-linked intermediates and BP. We then generated ECA deficient mutants in genes associated with production of the polysaccharide, which we suspected would accumulate materials identical to our standards. We found that indeed accumulated products from these cells were indistinguishable from our enzymatically prepared standards, and moreover we observed a concomitant decrease in cellular BP levels with each mutant. This work provides the first direct biochemical evidence for the sequestration of BP upon the genetic disruption of glycan biosynthesis pathways in bacteria. This work also provides methods for the direct assessment of both the ECA glycan, and a new understanding of the dynamic interdependence of the bacterial polysaccharide repertoire.


Assuntos
Antígenos de Bactérias/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Polissacarídeos/metabolismo , Especificidade por Substrato
4.
Mol Microbiol ; 115(2): 191-207, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979869

RESUMO

Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl pyrophosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic interactions which, in combination with ΔybjG ΔlpxT ΔbacA, are lethal or reduce fitness. The screen uncovered novel connections to cell division, DNA replication/repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. Loss of QseC causes overactivation of the QseB response regulator by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in QseC's absence and prior functions ascribed to QseBC may originate from cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.


Assuntos
Morfogênese/genética , Fosfatos de Poli-Isoprenil/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Fosfatidato Fosfatase/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato) , Transdução de Sinais
5.
Mol Microbiol ; 112(1): 233-248, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022322

RESUMO

Peptidoglycan (PG) is a highly cross-linked polysaccharide that encases bacteria, resists the effects of turgor and confers cell shape. PG precursors are translocated across the cytoplasmic membrane by the lipid carrier undecaprenyl phosphate (Und-P) where they are incorporated into the PG superstructure. Previously, we found that one of our Escherichia coli laboratory strains (CS109) harbors a missense mutation in uppS, which encodes an enzymatically defective Und-P(P) synthase. Here, we show that CS109 cells lacking the bifunctional aPBP PBP1B (penicillin binding protein 1B) lyse during exponential growth at elevated temperature. PBP1B lysis was reversed by: (i) reintroducing wild-type uppS, (ii) increasing the availability of PG precursors or (iii) overproducing PBP1A, a related bifunctional PG synthase. In addition, inhibiting the catalytic activity of PBP2 or PBP3, two monofunctional bPBPs, caused CS109 cells to lyse. Limiting the precursors required for Und-P synthesis in MG1655, which harbors a wild-type allele of uppS, also promoted lysis in mutants lacking PBP1B or bPBP activity. Thus, simultaneous inhibition of Und-P production and PG synthases provokes a synergistic response that leads to cell lysis. These findings suggest a biological connection that could be exploited in combination therapies.


Assuntos
Proteínas de Ligação às Penicilinas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Divisão Celular , Parede Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Fosfatos de Poli-Isoprenil/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química
6.
J Bacteriol ; 200(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686141

RESUMO

While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli, an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases.IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Ciclo Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Peptidoglicano/metabolismo , Domínios Proteicos
7.
Curr Biol ; 27(22): R1216-R1218, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161559

RESUMO

An innovative approach to harness cellular dimensions reveals fundamental links between cell size and other cellular processes in the bacterium Escherichia coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Tamanho Celular , Citoesqueleto
8.
J Bacteriol ; 199(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396350

RESUMO

Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Peptidoglicano/metabolismo , Bactérias/citologia , Bactérias/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico
9.
J Bacteriol ; 199(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096447

RESUMO

Peptidoglycan is a vital component of nearly all cell wall-bearing bacteria and is a valuable target for antibacterial therapy. However, despite decades of work, there remain important gaps in understanding how this macromolecule is synthesized and molded into a three-dimensional structure that imparts specific morphologies to individual cells. Here, we investigated the particularly enigmatic area of how peptidoglycan is synthesized and shaped during the first stages of creating cell shape de novo, that is, in the absence of a preexisting template. We found that when lysozyme-induced (LI) spheroplasts of Escherichia coli were allowed to resynthesize peptidoglycan, the cells divided first and then elongated to recreate a normal rod-shaped morphology. Penicillin binding protein 1B (PBP1B) was critical for the first stage of this recovery process. PBP1B synthesized peptidoglycan de novo, and this synthesis required that PBP1B interact with the outer membrane lipoprotein LpoB. Surprisingly, when LpoB was localized improperly to the inner membrane, recovering spheroplasts synthesized peptidoglycan and divided but then propagated as amorphous spheroidal cells, suggesting that the regeneration of a normal rod shape depends on a particular spatial interaction. Similarly, spheroplasts carrying a PBP1B variant lacking transpeptidase activity or those in which PBP1A was overproduced could synthesize new peptidoglycan and divide but then grew as oddly shaped spheroids. We conclude that de novo cell wall synthesis requires the glycosyltransferase activity of PBP1B but that PBP1B transpeptidase activity is needed to assemble cell walls with wild-type morphology.IMPORTANCE Bacterial cell wall peptidoglycan is synthesized and modified by penicillin binding proteins (PBPs), which are targeted by about half of all currently prescribed antibiotics, including penicillin and its derivatives. Because antibiotic resistance is rising, it has become increasingly urgent that we fill the gaps in our knowledge about how PBPs create and assemble this protective wall. We report here that PBP1B plays an essential role in synthesizing peptidoglycan in the absence of a preexisting template: its glycosyltransferase activity is responsible for de novo synthesis, while its transpeptidase activity is required to construct cell walls of a specific shape. These results highlight the importance of this enzyme and distinguish its biological roles from those of other PBPs and peptidoglycan synthases.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Proliferação de Células , Proteínas de Escherichia coli/genética , Mutação , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Esferoplastos/fisiologia
10.
J Bacteriol ; 198(22): 3070-3079, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27573014

RESUMO

Undecaprenyl phosphate (Und-P) is a member of the family of essential polyprenyl phosphate lipid carriers and in the Gram-negative bacterium Escherichia coli is required for synthesizing the peptidoglycan (PG) cell wall, enterobacterial common antigen (ECA), O antigen, and colanic acid. Previously, we found that interruption of ECA biosynthesis indirectly alters PG synthesis by sequestering Und-P via dead-end intermediates, causing morphological defects. To determine if competition for Und-P was a more general phenomenon, we determined if O-antigen intermediates caused similar effects. Indeed, disrupting the synthesis of O antigen or the lipopolysaccharide core oligosaccharide induced cell shape deformities, which were suppressed by preventing the initiation of O-antigen biosynthesis or by manipulating Und-P metabolism. We conclude that accumulation of O-antigen intermediates alters PG synthesis by sequestering Und-P. Importantly, many previous experiments addressed the physiological functions of various oligosaccharides and glycoconjugates, but these studies employed mutants that accumulate deleterious intermediates. Thus, conclusions based on these experiments must be reevaluated to account for possible indirect effects of Und-P sequestration. IMPORTANCE: Bacteria use long-chain isoprenoids like undecaprenyl phosphate (Und-P) as lipid carriers to assemble numerous glycan polymers that comprise the cell envelope. In any one bacterium, multiple oligosaccharide biosynthetic pathways compete for a common pool of Und-P, which means that disruptions in one pathway may produce secondary consequences that affect the others. Using the Gram-negative bacterium Escherichia coli as a model, we demonstrate that interruption of the biogenesis of O antigen, a major outer membrane component, indirectly impairs peptidoglycan synthesis by sequestering Und-P into dead-end intermediates. These results strongly argue that the functions of many Und-P-utilizing pathways must be reevaluated, because much of our current understanding is based on experiments that did not control for these unintended secondary effects.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/ultraestrutura , Lipopolissacarídeos/biossíntese , Antígenos O/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Vias Biossintéticas , Parede Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/biossíntese
11.
Mol Microbiol ; 100(1): 1-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26593043

RESUMO

Bacterial morphology is determined primarily by the architecture of the peptidoglycan (PG) cell wall, a mesh-like layer that encases the cell. To identify novel mechanisms that create or maintain cell shape in Escherichia coli, we used flow cytometry to screen a transposon insertion library and identified a wecE mutant that altered cell shape, causing cells to filament and swell. WecE is a sugar aminotransferase involved in the biosynthesis of enterobacterial common antigen (ECA), a non-essential outer membrane glycolipid of the Enterobacteriaceae. Loss of wecE interrupts biosynthesis of ECA and causes the accumulation of the undecaprenyl pyrophosphate-linked intermediate ECA-lipid II. The wecE shape defects were reversed by: (i) preventing initiation of ECA biosynthesis, (ii) increasing the synthesis of the lipid carrier undecaprenyl phosphate (Und-P), (iii) diverting Und-P to PG synthesis or (iv) promoting Und-P recycling. The results argue that the buildup of ECA-lipid II sequesters part of the pool of Und-P, which, in turn, adversely affects PG synthesis. The data strongly suggest there is competition for a common pool of Und-P, whose proper distribution to alternate metabolic pathways is required to maintain normal cell shape in E. coli.


Assuntos
Antígenos de Bactérias/metabolismo , Escherichia coli/fisiologia , Redes e Vias Metabólicas , Fosfatos de Poli-Isoprenil/metabolismo , Antígenos de Bactérias/genética , Parede Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genótipo , Mutação , Transaminases/genética , Transaminases/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(36): 11347-52, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305949

RESUMO

Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to "denuded" glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sítios de Ligação/genética , Divisão Celular , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Modelos Biológicos , Mutação , Ligação Proteica
13.
Mol Microbiol ; 93(1): 113-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24806796

RESUMO

Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called 'naked glycans'). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular/metabolismo , Glicosídeo Hidrolases/genética , Mutação , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...